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Pattern dynamics in bidimensional oscillatory media with bistable inhomogeneities
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By means of numerical simulations, we study pattern dynamics in selected examples of inhomogeneous
active media described by a reaction diffusion model of the activator-inhibitor type. We consider inhomoge-
neities corresponding to a variation in space of thenlineaj reaction characteristics of the system or the
diffusion constants. Three different bidimensional systems are analyzed: an oscillatory medium in a square
reactor with a circular central bistable domain, and cases of a bistable stripe immersed in an oscillatory
medium in a trapezoidal reactor and in a rectangular reactor with inhomogeneous diffusion. The different types
of complex behavior that arise in these systems are analyzed.
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I. INTRODUCTION U=V2u+f(u)—v,
The phenomena of pattern formation are ubiquitous in .

almost all branches of scientific endeavor, ranging from v=D,VZu+u—yv, (1)

physics and chemistry to biology and technolddjyy Among

the different possible model descriptions of pattern formingwheref(u): —u3+u characterizes the nonlinearity of the
systems, the reaction-diffusion models of the activatormedium. The inhomogeneity was introduced in the model
inhibitor type[2,3] have provided a useful theoretical frame- through a spatial dependence on the parametesetting y
work in all areas. =y(x)=0.9+5 exp(—10x*). This leads toy=0.9<1 for

In a recent papef4] we analyzed, in a unidimensional |x|>0.8 (oscillatory medium and y>1 for |x|<0.8
simple model, the effect of the presence of inhomogeneitieghistable medium In addition to stationary, oscillatory, and
in an otherwise homogeneous active system. We found @uring patterns, quasiperiodic inhomogeneous oscillations
richer spread of behaviors than those occurring in typicabnd spatiotemporal chaos were also found. States belonging
bistable, oscillatory, or excitable homogeneous active mediao the homogeneous limit cycle, which exist for the case
The pattern formation phenomena arising in each kind of=0.9, were considered as initial conditions. This choice cor-
homogeneous active medium have their own characteristiagsponds to the idea of having an initially homogeneous os-
[3]: in bistable media we have front structures separatingillatory medium which is suddenly modified in a localized
guasihomogeneous domains where the system is in one oégion(for example, by lighting photosensitive chemical re-
the two stable states of the uncoupled system. Examples @afctions in gel§10]). In the central bistable region, the fields
such structures include moving fronts in one-dimensionatapidly converge to the valuesi{==+0.8p.==*+0.14) of a
systems[3,5] and labyrinthine structures in bidimensional homogeneous bistable system with y(x=0)=5.9 (= de-
systemd6]. The most common examples of patterns arisingpending on the initial conditiof11]), while the rest of the
in models of excitable medig8] are traveling pulses, spiral system evolves to different asymptotic behaviors. Note that
patterns and more complex structures of vortices in thre€gs. (1) have an odd symmetry, implying that if
dimensions. Those models are useful to describe chemicgli(x,t),v(x,t)] is a solution, ther —u(x,t),—v(x,t)] is a
systems such as the Belousov-Zhabotinskii and related reaselution as well. In Fig. 1 we show the phase diagram indi-
tions, and also to describe biological systems such as neurehting the asymptotic behavior of the systgstationary pat-
or cardiac tissue$2,3,7]. In oscillatory systems, the most terns(SP’9, Turing (TP), inhomogeneous periodic oscilla-
typical structures appearing are homogeneous oscillationsions (PO’s), quasiperiodic(QP), and chaotic(CH)] as
Turing patterns, and spiral patterfis3]. functions of the parametei3, andL. Here it is worth re-

In Ref.[4], the case of a finite unidimensional oscillatory marking that the error in the determination of the position of
medium with an immersed bistable spot, with nonfluxthe transition lines is of the order of the width of the plotted
boundary conditions in-L, was analyzed. The reaction dif- lines in the picture.
fusion model considered w#8,9] What we here call stationary patterns appear for siall

(smaller than two Turing wavelengths of the medi4l as
a consequence of the relative large size of the bistable spot

*Electronic address: bouzat@cab.cnea.gov.ar that prevents the system from asymptotically performing
"Electronic address: wio@cab.cnea.gov.ar temporal oscillations. The Turing patterns, that are also sta-
*http://cab.cnea.gov.ar/cab /invBasica/fisEstad/estadis.htm tionary, have a completely different origithey are a con-
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otic regions, with others that are, for instance, periodic or

30 Turing-like.
25 In this paper we will work with finite systems. We want to
J remark here that the size of the system is always a relevant
20 parameter in our studies, as the asymptotic regime depends
; on this. Also, boundary conditions are important in determin-
o 15 ing the dynamics: all the results in this paper are for nonflux

(Neumann boundary conditions, which is the usual choice
when dealing with chemical systems. However, some nu-
merical studies, that are in progress, have shown us that
similar results may be obtained using more general partially
reflective conditiong du(L)/dx=ku(L)] for small enough
values ofk, the albeddor reflectivity) parameter.
20 40 80 0 100 Similarly to what was done in Ref4], in the three prob-
L lems studied in this work we will consider homogeneous
initial conditions belonging to the limit cycle existing for an
FIG. 1. Phase diagraff(L,D,) plang corresponding to a one- homogeneous system with=0.9. As explained above for
dimensional inhomogeneous system consisting of an oscillatoryhe case of a unidimensional system, the inhomogeneities of
medium with a central bistable spot. The regions corresponding t¢he media are assumed to be caused by an external mecha-
s.tatiolna.ry patterns, periodic .oscillatio.ns,. Turing patterns, and qQUanism, and to appear in a sudden way when the sygtetich
siperiodic and chaotlc behaviors are indicated by SP, PO, TP, QRg originally purely oscillatory is performing an homoge-
and CH, respectively. neous periodic motion.

The experimental observation of the predicted behaviors
sequence of the Turing diffusional instability of the me- might be realized by adequately designing chemical or elec-
dium), and arise for larger system4]. trical systemg12] sharing the properties of the models here

In this work we continue the line of research started indiscussed. One simple option seems to work with chemical
Ref. [4], analyzing more realistic bidimensional systemssystems. The idea is to prepare the systdan instance
combining oscillatory and bistable domains. The aim of thisBelousov-Zhabotinskii or CIMA-like reactiohsvith photo-
paper is to present, in a descriptive way, some examples ¢fensitive catalyzers or reactants, allowing us to create inho-
inhomogeneous situations in bidimensional systems leadingiogeneities by illuminating some adequately selected areas
to different kinds of complex dynamics. We do not intend[13]. Another option is to work with inhomogeneous gels
here to describe all the possible complex dynamics that coulgroviding, for example, a way to obtain a inhomogeneous
arise in the kinds of systems studied. Instead, we want tdiffusivity [14]. Clearly, it is also possible to explore mixed
show that a wide spectrum of possibilities appears whersituations.
some kind of inhomogeneous situations is considered. Our All numerical calculations have been made as follows.
goal will be to attract the interest of experimentalists to studyFirst, different systems of partial differential equations were
inhomogeneous pattern forming systems with characteristicgpproximated by systems of coupled ordinary differential
similar to those here analyzed. equations, obtained by finite difference schemes. Second, the

We will extend the previous theoretical analysis to someresulting equations were solved by a Runge-Kutta 2 method.
situations that are generalizations of the unidimensional cadeifferent space and time discretizations schemes were em-
studied in Ref[4]: a square oscillatory medium with a cen- ployed in order to check the results.
tral circular bistable spot, a rectangular oscillatory medium The details of the functional forms chosen for introducing
with a bistable stripe and inhomogeneous diffusion, and dhe inhomogeneities in—in the one-dimensional problem
trapezoidal oscillatory medium with a bistable stripe. Thediscussed in Ref4] and also in the bidimensional problems
first case is the simplest of all of these. However, such analyzed in the following sections—are irrelevant, as exten-
system exhibits some new interesting dynamical characterissively checked in simulations. The relevant fact is the choice
tics. The other two cases are nontrivial generalizations of thef the coupling between bistable and oscillatory regions
system discussed in Reff4]. The case of the rectangular (with sharp interfaces Furthermore, in the unidimensional
system corresponds to the coupling between unidimension@roblem, even the size of the bistable spot is unimportant as,
systems with different inhibitor diffusionghat is, sweeping for example, an increase of this parameter causes only a
in a vertical direction in the phase diagram of Fig. The  slight shift of the transitions lines but preserves all the struc-
case of the trapezoidal system corresponds to the couplingre of the phase diagram unchanged. This is because, in the
between unidimensional systems with different lendthat  unidimensional problem, the bistable region acts almost as
is, sweeping in a horizontal direction in the phase diagram o&n effective boundary condition. The robustness of the re-
Fig. 1). In this way we expect to see the result of the mixing,sults with respect to changes in the functional formy¢xk)
in a bidimensional system, of the different behaviorsalso becomes apparent as, when trying different spatial dis-
(phasesoccurring in the swept region of the phase diagramcretizationsthat cause the function to be evaluated in differ-
of the unidimensional system. Hence we will be studyingent positiong the results remains essentially unchanged. All
examples of pattern forming systems that couple, say, chdhe calculations for the bidimensional systems analyzed in
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FIG. 2. Contour plots of the field for five

different times during a period of the motion
e : ocurring for (8 D,=0, L=25, and ry=0.5
(symmetric periodic oscillation and (b) D,

=1, L=25, andry=2.5 (asymmetric periodic
b oscillation. In both cases, from left to right, the

plots correspond to timesty, to+ /4, tg
+17/2, tg+37/4, and ty+7. With ty in the
asymptotic regime and the measured period of
the motion.

this paper have been done using much finer spatial discreting trait of bistability is lost. This phenomenon occurs for
zations than the one needed to clearly identify the kind osmall enough values af, andD,, and can be interpreted as
regime appearing in the system for the values of parametefgllows: in the case of strong coupling or large bistable re-
considered. gion (high D, or r) the influence of the surrounding oscil-
The organization of the paper is as follows: in Sec. Il we|atory medium is not strong enough to produce transitions
study the pattern formation in a square oscillatory mediumpetween the two states of the bistable region and the fields
with a circular bistable spot. We also explain the methodyqont values nearu(. ,v.). In the opposite casésmall
used to identify the kind of behavior occurring in the SyStemenoughro orD,) the influence of the surroundings is stron-

(chaotic or qua5|per|od)c_ln Sec- Il we analyze_ the_ case of ger and within the bistable region the fields oscillate around
a rectangular reactor with inhomogeneous diffusion of th

inhibitor while in Sec. IV we present results for a trapezoidal
reactor. Section V is devoted to a discussion of results and t%
some conclusions.

a

Figure 2 shows contour plots of thefield corresponding
different times during a period of the asymptotic periodic
regime of the system for two different sets of parameters.
Figure Za) shows the symmetric oscillation of the bistable
Il. SQUARE OSCILLATORY MEDIUM WITH A spot (the center oscillates from white to black during a pe-
CIRCULAR BISTABLE SPOT riod), while in Fig. 2b) the central spot remains in one of the
) . . ) two states of the bistable medium. We call the asymptotic
Here we consider a nonlinear medium described by Edsegime symmetric or asymmetric depending on whether the
(1) in a geometry corresponding to a square domairl( pistaple spot behaves as in FigaRor 2(b), respectively.
=x=L,—L=y=L) with nonflux boundary conditions. We | js worth mentioning that for the 1D system, even for
introduce a spatial dependence for paramejersetting very small values of , (i.e., r,=0.1), the regime is always
¥(%,y)=y(r)=0.9+ 2.5 1+tanh(—6(r —r))] [15], where  5symmetric(the bistable spot is always fixed in one of its
r=+/x%+y?. As the system is bistable far>1 and oscilla-  two states Furthermore, for,=0.05 we observed a transi-
tory for y<<1, with this choice ofy(r) the medium is oscil- tion in the asymptotic regime from periodic to quasiperiodic
latory (with y=0.9) except in a central spot of radius (for example forD,=2 andL=40) that remains asymmet-
=ry where it is bistabléwith y=5.9). As in the unidimen- ric. This important difference between the behavior of the
sional problem described in R¢#] (a one-dimensional sys- 1D system and the bidimensional system shows the stronger
tem), we consider a homogeneous initial condition belonginginfluence of the surrounding oscillatory medium on the
to the homogeneous limit cycle of a purely oscillatory me-bistable spot in the bidimensional case.
dium (with y=0.9). We have solved Eq$l) numerically As in the 1D system, two different stationary regimes
for different values oL,D,, andr. appear: for small values df/r, stationary patterns appear
The results for the bistable spot in two dimensions show as a consequence of the relatively large size of the bistable
similar variety of behaviors as in one dimensi@tationary, domain[4], while for higher values ofL and D, Turing
Turing, periodic, quasiperiodic, and chaotic pattgridow-  patterns arise. Figure 3 shows patterns corresponding to two
ever, here we have one important difference added to thdifferent sets of parameters in the Turing region. The Turing
complexity of the dynamics: the existence of asymptotic mo4instability appears in the oscillatory medium fbr,>1.7,
tions whereu(0,0) andv (0,0) oscillate symmetrically about and coexists with the Hopf instabilitj4,16]. Roughly for
zero, instead of setting near one of the two states of th®,>2.3 the Turing instability completely dominates the dy-
bistable media \{.. ,v.), as occurs in the one-dimensional namics, that is, the system evolves to stationary spatially
(1D) system. For some region of parameters, such oscillaperiodic patterns. These patterns are generated by freezing
tions can be interpreted as periodiuasiperiodic or chaotic  fronts [4,12] that propagate from the bistable region to the
transitions between the two states of the bistable spot, a®st of the system, changing the dynamics from Hopf-like to
u(0,0) [v(0,0)] oscillates symmetrically around O with an Turing-like. The characteristic Turing wavelength s
amplitude similar to(but slightly lower thap u, (v,). In =13.
other cases, the symmetrical oscillations of the bistable spot In the 1D systenj4], the nonstationary and nonperiodic
have an amplitude much smaller than and every remain- asymptotic regimes are classified as quasiperiodic or chaotic

056213-3



S. BOUZAT AND H. S. WIO

a

=20

o

-40 -20 0 20 40

by analyzing the sensibility to initial conditions. In the bidi-

PHYSICAL REVIEW E63 056213

FIG. 3. Turing patterns appearing f¢a D
=2.5, L=40, andry=0.5; and(b) D,=2.5, L
=25, andry=2.5.

here is that we have not found marginal or confused cases

mensional problems such a study involves a much largewhere the distinction between the types of behavior is not
computational cost. Here, as a cheaper alternative, weompletely clear.

present a method that allows us to determine whether the In Table | we present the results of some of the calcula-
behavior is chaotic or quasiperiodic by simple glancing at dions for different values of the parametdrsro, andD,,

discrete temporal series. At a given spatial positiory) we
consider the successidty(x,y)} of times at whichu(x,y,t)
reaches a local maximum as function Bfi.e., the times
when

J
EU(Xryit)hn(x,y):O 2

and

(92
_u(xiyvt)|tn(x,y)<o (3)

occur simultaneously. Then we define a succession

{pn(XvY):tn(xyy)_tnfl(xyy)}- (4)

We first studied the behavior ¢p,(x=L)} for the 1D sys-

indicating the kind of asymptotic motion by the same no-
menclature as in Fig. 1 and addir§or A according to
whether the oscillations are symmetric or asymmetric, re-
spectively, in the sense discussed above. In the table, the
following tendencies can be appreciated, some of them being
analogous to those appearing in the 1D system, which are
clearly reflected in the phase diagram of Fig. 1.

(i) For small values of., only stationary or periodic be-
haviors are observed. The tendency to stationarity introduced
by the presence of the inhomogeneity causes the amplitude
and frequency of the oscillations in the oscillatory media to
decrease. For very smadll the oscillations are completely
inhibited in the whole system; for largdr, an inhomoge-
neous periodic regiméwith a frequency slightly lower than
the natural of the oscillatory mediais asymptotically
reached.

(i) For smallD, (=<1) the behavior is periodior sta-
tionary for very small . The higherD, is the richer the
spatial structure of the patterns in the PO region, due to the
more efficient transmission of the effect of the inhomogene-

tem, finding that this analysis provides a useful and simplgty .

way to determine the character of the dynamipsriodic,
quasiperiodic, or chaoticln the case of periodic motion the
value of p,(L) converges to a constapt, which coincides

with the period of the global motion. In the case of quasip-

eriodic motion, thep,(L)’s asymptotically show a periodic

or quasiperiodic behavior. In the chaotic region, which wase

defined originally as the region with a high sensitivity to
initial conditions, thep,(L)’s exhibit a highly disordered
behavior. In Fig. 4 we show the typical plots of thg(L)’s

in all three regions.

For the bidimensional problem discussed in this section, © 19]

100
[ 7 L i i 18-'
three types of behavior as in the 1D system. In the case: 1; M
where p,(L,L) converges to a constant, we have verified 151

we have studied the plots ¢p,(L,L)}, finding the same

that, as in the one-dimensional case, the global motion is
periodic with a period equal to that constant. We have clas-

4 T T T
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e fw»~
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n

sified the nonperiodic motions as quasiperiodic or chaotic FIG. 4. Plots ofp,(L) for a 1D system corresponding ta)

depending on whether the behavior of fh&L,L)’s is like
that in Fig. 4b) or Fig. 4(c), respectively. A remarkable fact

05621

D,=1.7, L= 35 (periodic oscillationy (b) D,=1.7, L=50 (qua-
siperiodic motion, and(c) D,=1.7, L=280 (chaos.
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TABLE I. Results of the calculations for different values of the parameterg, andD,. Here we
indicate the kind of asymptotic motion using the same nomenclature as in Fig. 1. Weaxdslaccording
to whether the oscillations are symmetric or asymmetric, respectively.

D, L=8 L=8 L=25 L=25 L=40 L=40 L=60 L=60
l l’0=0.5 r0:0.25 I'0=0.5 r0:2.5 I’0=0.5 r0:2.5 r0=0.5 I’0=2.5
0 POS POA POS POA POS POA

1 POS SP POS POA POS POA

15 POS SP QPS POA QPS QPA CH-S CH-S

2 POS SP POA POA CH-S QPA CH-S CH-S

2.5 SP SP PG TP TP TP

(iii) There exists a region of intermediate valuesDgf  as the result of the coupling and competition between the
(approximately kD, < 2.5 depending ony) where quasip- different regions, and will depend not only on the regions
eriodic or chaotic motion may appear. Note that the valuanvolved but also on their sizes.

D,=1 is a precise limit in the one-dimensional casee Here we present and discuss the results for five different
Fig. 1) for the appearance of nonperiodic behavior. This limit2D systems associated with the five vertical segments indi-
corresponds to the diffusion of the inhibitor being equal tocated with Figs. 8—5(c). In all the cases we have used the
that of the activator, the last one being fixed equal to 1 in EqvalueL,=15.

(2). First we study the example corresponding to a case where
(iv) For smallry or smallD,,, the bistable spot oscillates the 2D system is in the periodic region of the phase diagram
symmetrically around 0O, as explained above. of Fig. 5@ for all values ofx. The parameters arg,
(v) For highD, (approximately=2.5), Turing patterns =30, D,(—L,)=D,,=0, andD,(L,)=D,;=2. The glo-
are generated by means of freezing fronts. bal behavior of the system is periodic. In Figapwe show

(vi) A reduction in the spot’s size can, at least in somethe contour plots of ther field corresponding to different
cases, increase the complexity of the dynami€or ex-  times during a period of motion. It can be observed thakfor
ample, causing changes from stationary to periodic, periodiaear—L, (smallD,) the oscillation is almost homogeneous
to quasiperiodic or from quasiperiodic to chaotic regimes. in the y coordinate, while neat, (larger D,) the spatial

structure is more complex. This can be better appreciated in
. A RECTANGULAR REACTOR WITH Fig. &b), where we show space time plotsy) of theu

INHOMOGENEOUS DIEEUSION OF THE INHIBITOR fields forx=—L, andx=L,. In the first case, the oscilla-

_ _ tions are homogeneous, while in the latter there are periodic

Here we consider the case of a rectangular oscillatoryyaves that travel from=L, toward the bistable region.
medium (-L,<x<Ly,—Ly<y=L,) with a bistable stripe  These properties are inherited from the characteristics of the
aroundy=0. In this case we solve Eqsl) with y(X,y) 1D system for the corresponding valuesf, and are simi-

=y(y)=0.9+2.91+tanh(—6(y—Yyo))], with no flux jar to those reported in Sec. Il the case of the square oscilla-
boundary condition and homogeneous initial conditions agory medium with the circular bistable spot.

before. Herey, is (approximately the half width of the

bistable stripe. For homogeneous initial conditions the sys-
tem would be equivalent to the one-dimensional case dis-
cussed in Refl4]. However, here we consider an additional 25: SP TP I
inhomogeneity in the medium: a dependence of the inhibitor o
diffusion D, on thex coordinate. We set 50 C%

3.0 1 }

A A A
J (e) 1
(Dvl_DvO) : ® : CH !

= _ > 1.5
Dv DUO+(X+LX) 2Lx d (5) [m) | i QP @ i | E
. | |
With D,,0<D,1. b oo R
Now, the bidimensional systen2D system can be 0.5 ! ! ! !
thought as &continuous array of coupled 1D systems ana- ' @' ()| (! ©!
lyzed in Ref.[4], one for each value of with a value ofL 0.0 ¥ v ¥ ¥

=L, andD,=D,(x). This 2D system can be associated with —
a vertical segment in the phase diagram of Fig. 1, going from 20 40 60 80 100
(Ly,Dyo) to (Ly,D,4). This segment may cross one or more
transition lines separating regions of different asymptotic be- FiG. 5. Phase diagraf(L,D,) pland corresponding to the 1D
havior of the 1D system. In such cases, different parts of theystem studied in Ref4], indicating the segments associated with

2D system will tend to perform different asymptotic motions. different cases of the bidimensional problem analyzed in Secs. IlI
The global long time behavior of the 2D system will emergeand IV.
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time in which waves emerging from negr= *L /2 appear.
For x=L,, waves emerging from the bistable zone that are
b annihilated nealy= +L,/2, with others coming frony=
15 Third, we analyze the case corresponding to the param-
0 . etersL,=100, D,(-Ly)=D,,=0, andD,(L,)=D,1=2

— = [segmentc) in Fig. 5]. Forx<0 the system is in the periodic
region, while forx>0 it is in the chaotic one. In this case the
. global behavior is chaotic. The different kinds of waves ap-
3360 3400 3440 3480 pearing in the space time plo{sot shown are similar to
=
5 0 15
%

20

*L, can be observed. Furthermore, the typical signature of

quasiperiodicity and chaos in the space time plot, which is

the onset of defectgdislocation$, is also present. In this

case, the increase of complexity originated by the increase of
30 D,—also observed and explained in the previously studied
systems—is apparent.

t those of Fig. B). However, in this case the dislocations
40 appear not only fox>0 but also forx<0. This means that
the signature of chaos have invaded the whole system.
For the case of Fig. ®) [Ly=80, D,(—L,)=D,c=0,
andD,(L,)=D,;=3], the system has approximately one-

third of its area in the periodic region, one-third the chaotic
region, and one-third in the Turing region. The global behav-

39

15

9 ior is periodic. This is an unexpected result, since the system

45 has a significant part of its area within the chaotic region.
Unlike Fig. 5c), where the chaotic behavior advances over
‘303350 3400 3440 3480 the periodic zone, here the periodic and stationdiyring)

tendencies of the corresponding zones cooperate to inhibit
the chaotic features in the system. This case is a clear ex-
ample of coexistence of Turing- and Hopf-like domains
[16,12. In Fig. #b), we show the contour plots of the
fields corresponding to two different times during a period of
motion. It is apparent here that the Turing pattern appearing
on the right side of the system acts effectively as a boundary
condition, limiting the chaotic tendency of the central part of
the system.

For the case of segmerie) in Fig. 5 [L,=80, D,
(-LyY=D,=15, andD,(L,)=D,;=2.4] the system has
approximately one-third of its area in the Turing region,
while the rest is chaotic. Now the global behavior is also
chaatic. In this case, the weight of the Turing zone is not

FIG. 6. (a) Contour plots of theu field for five different times enough to prevent the Cha.wtic behgvior. A very inte_resting
during a period of the(periodid motion ocurring for D, phenomenon occurs here: in the Turing zone, the Tu_rlng pat-
=0, D,;=2, andL,=30. From top to bottom, the plots correspond terns appear and d!sappear repeatedly, alternatlr_]g with quasi-
to timesty, to+ /4, ty+ 712, to+37/4, andty+ 7. With to in the ~ homogeneous oscillations. The Turing pattern is generated
asymptotic regime ana=16.42, the measured period of the mo- by freezing fronts like those described in Ref], that come
tion. (b) Space-time plots of thel field at x=—15 (top) andx  from the bistable region, live for a certain period of time
=15 (bottom) for the same asymptotically periodic motion. (typically of the order of 26,), and then are destroyed by

“melting” fronts going fromy= =L, to the bistable stripe.

The second system analyzubrresponding to the verti- In Fig. 8 we show a space time plot exhibiting this phenom-
cal segmentb) in Fig. 5] is in the quasiperiodic region for enon.
x>0(D,>1) and in the periodic region fox<0. The pa- The five cases discussed in this section clearly illustrates
rameters arelL,=60, D,(—L,)=D,,=0, and D,(Ly) the wide spectrum of possibilities that arises when consider-
=D,1=2. In this case the global behavior is quasiperiodic.ing inhomogeneous situations where regions of different
In Fig. 7(a) we show space time plots of thefield for x= “natural” behaviors are coupled. Such systems, beyond the
—Ly, x=0, andx=L,. In the first case we note that homo- problem of combination of bistable and oscillatory media,
geneous oscillationgn they coordinatg alternate with trav-  are in fact examples of pattern forming systems that couple
eling waves going fromy==*L, to the bistable zone. regions showing chaotic behavior with others that have a
Around x=0 the behavior is similar, but there are periods ofperiodic or Turing-like behavior. In Sec. IV we will continue

20

t

-20

__—
-29-
-1
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FIG. 7. () Space-time plots for the field
corresponding to the system with, =60, D,
(-LyY=0, andD,(L,)=2. The plots are fox
=—15, x=0, andx=15 from top to bottom(b)
Contour plots of theu field for two different
times (differing in half period in the periodic
motion ocurring forD,,=0, D,;=2, andL,
=30. Calculations correspond to Fig.ds

with this general view, analyzing a different inhomogeneouauniform value ofD, . Similarly to the case analyzed in Sec.

situation in a trapezoidal reactor.

IV. A TRAPEZOIDAL REACTOR

I, with this 2D system we can associate a now horizontal
segment in the phase diagram of Fig. 1, going from
[Ly(0),D,) to (Ly(L,),D,], that may cross one or more

transition lines. The system shows different asymptotic glo-

Here we present some results for the case of a trapezoidphl behavior depending oby(0), a, andD,, that can be
reactor containing an oscillatory medium with a bistable(as in the other analyzed systenssationary, periodic, qua-

stripe. We consider a system withsk<L, andL,=

Ly(x)

siperiodic, chaotic or Turing-like. In Fig. 9 we show the

=Lo+ax, fixing Neumann boundary conditions and uniform contour plots of theu field at two different times in the
initial conditions as usual. The inhomogeneity is the same agsymptotic regime for a case in which the behavior is cha-

in the problem of Sec. Ill, given byy(x,y)=vy(y)=0.9
+2.91+tanh(—6(y—Yy))], implying a bistable stripe of a
half width approximately equal tg, aroundy=0. The rest
of the medium is oscillatory withy=0.9.

In this case, the system can be thought dsaamtinuous
array of coupled 1D systenisne for each value of), each
one with a different lengttisinceL, depends orx), and a
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otic.

Here we report the analysis of two particular examples
corresponding to two different horizontal segments in the
quasiperiodic region of the phase diagram of the 1D system
[which are shown in Figs.(§ and 5g)]. In both cases we
have fixed L,=30. The segment in Fig. (8 [L(0)
=45, D,=1.9, anda= 1/3] crosses a small chaotic window,

FIG. 8. Space-time plot of the field for
x=L,, corresponding to the system with
L,=80, D,(—-Ly)=1.5, andD,(L,)=2. We
observe the intermittent appearing and disappear-
ing of the Turing pattern.
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FIG. 10. Plots ofp,[Ly,L,(Lx)] for trapezoidal systems corre-
sponding to(a) Fig. 5f) and(b) Fig. 5g).

for inhomogeneous media having the geometrical distribu-
% tion of bistable and oscillatory regions discussed here, and
would not depend on the specific model equations consid-
FIG. 9. Contour plots of the field for a trapezoidal system at ered.
two different times(differing approximately by half the character-  pue to the expected connection with experimental setups
istic period of the oscillatory medium with=0.9). The parameters using photosensitive catalyzers, we have focused on a homo-
arel,=192, L,(x=0)=30, 2a=0.25, andD,=1.3. geneous initial condition, as this is one of the most relevant
cases. The choice of other kinds of initial conditions may
while the segment of Fig.(§) [L,(0)=45, D,=1.5, and cause the asymptotic regime to be different from those found
a=1/3] lies completely within the quasiperiodic region of for homogeneous initial conditions, and may also lead to
the phase diagram. In Fig. 10 we show the plots ofregimes not predicted here. A more general analysis of prob-
PnlLx,Ly(Lx)] for both cases, from which it can be seenlems with arbitrary initial conditions is clearly beyond the
that the behavior is chaotic in the case of the Fid) &nd  scope of this paper.
quasiperiodic in the case of Fig(d. It is worth remarking In the first example we studied, which corresponds to the
here that in the first case the presence of the small chaotigase of a square oscillatory medium with a central circular
window is enough to induce the chaotic behavior in thebistable domain, we observed an important difference from
whole system. Note that the signal in Fig.(d0is measured the results of the unidimensional system found in R4f.
in a position[the right end of Fig. &)] where, according to  This difference appears in the possibility of observing jumps
the original diagram, it should behave as a quasiperiodigetween the two states of the bistable domain, which are
(nonchaotig one. induced by the surrounding oscillatory medium or, equiva-
lently, a symmetric oscillation of the fields in the bistable
domain around the zero value. Apart from this phenomenon,
we again found the same diversity of behaviorcluding
We have presented three different examples of bidimenTuring patterns, spatiotemporal chaos, es in the unidi-
sional inhomogeneous pattern-forming systems, each comnensional system.
sisting of an oscillatory medium with a bistable domain, in  As explained in Sec. |, referring to the unidimensional
different geometries with Neumann boundary conditionscase, Egs.(1) have odd symmetry, implying that if
The work extends the studies started in Réfl, where a  [u(x,t),v(x,t)] is a solution, ther —u(x,t),—v(x,t)] is a
simple unidimensional inhomogeneous system was analyzedolution as well. This symmetry is clearly also present in the
Such systems correspond to examples of pattern-formingidimensional case. For those cases where the bistable cen-
systems coupling regions where the dynamics is chaotidyal region converges to one of its stable statdsthe stud-
with others where the dynamics is periodic or Turing-like.ied cases with the exception of the symmetric motions in
We expect that the results obtained here should be ubiquitouec. I, a general bistability behavior exists.

V. FINAL REMARKS
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The second example we studied corresponds to a rectanf propagation of the freezing frontHowever, in the prob-
gular oscillatory medium with a bistable stripe with inhomo- lem studied in Sec. I(see Fig. 3, the Turing patterns does
geneous diffusion of the inhibitararying linearly along the not have the symmetry of the circular bistable spot, as a
direction of the stripg In this casdat least for the widths of consequence of the square shape of the system and the Neu-
the stripe consideredthe bistable domain remains fixed in mann boundary conditions.
one of the two possible states. Depending on the values of To distinguish between chaotic and quasiperiodic behav-
the minimum and maximum diffusion of the inhibitor, and iors, we have introduced a simple method in which we ana-
on the length of the system in the direction normal to thelyze a temporal signal taken from a unique spatial position.
bistable stripe, we found different kinds of global behaviorin this way we avoid the calculation of the Lyapunov expo-
(again including and quasiperiodic oscillations, chaos, andents, which implies a large computational cost for the bidi-
stationary—Turing—patterfisWe have analyzed the differ- mensional systems.
ent spatiotemporal waves appearing, viewing the system as a It is also worth mentioning here that in this work we have
set of coupled unidimensional systems like the one studied ifocused on solutions with some spatial symmetry. For ex-
Ref.[4]. Among other phenomena, we found the coexistencemple, in the cases discussed in Secs. Il and IV, the solu-
of Turing- (in the region of highD,) and Hopf-like(in the  tions have even parity in thecoordinate. For some particu-
region with smallD,) [16,12 behaviors in a globally peri- lar sets of parameters within the chaotic regime, we have
odic regime; and the consequent production and annihilationbserved a numerical breakifg7] of this symmetry. In the
of a Turing patterr{which alternates with temporal inhomo- studied cases, these effec¢tbat are common when using
geneous oscillationsccurring in a globally chaotic system. finite difference schemes for solving reaction diffusion equa-

The third example we studied corresponds to a trapezoiddions) were suppressed by improving the spatial discretiza-
oscillatory medium with a bistable stripe that can be seen aton, though at the price of increasing the computational
a coupling between unidimensional systems with the sam@me. A less time consuming option for further analysis of
inhibitor diffusion but different lengths. The existence of dif- the chaotic dynamics in the systems analyzed here could be
ferent complex behaviors is also apparent. In particular, wgrovided by pseudospectral methdds]. A richer charac-
have seen that sweeping through a small chaotic windowerization of the chaotic behavior in this kind of system, ex-
may be enough to induce chaotic behavior in the whole sysploiting the biorthogonal decomposition methdd] as well
tem. as some topological analysis of chaotic time sefrie3, will

In all the analyzed exampldand also in the unidimen- be the subject of further work.
sional problem referred to in Seq, the Turing patterns are
generated by means of freezing fronts that travels from the ACKNOWLEDGMENTS
bistable domain to the rest of the system, changing the dy-
namics of the oscillatory media from Hopf-like to Turing-  The authors thank V. Grunfeld for a revision of the manu-
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